
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/381521277

Coordinate Descent Algorithm for Nonlinear Matrix Decomposition with the

ReLU function

Conference Paper · June 2024

CITATIONS

0

5 authors, including:

Atharva Awari

Université de Mons

1 PUBLICATION 0 CITATIONS

SEE PROFILE

Nicolas Gillis

Université de Mons

197 PUBLICATIONS 4,112 CITATIONS

SEE PROFILE

All content following this page was uploaded by Atharva Awari on 19 June 2024.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/381521277_Coordinate_Descent_Algorithm_for_Nonlinear_Matrix_Decomposition_with_the_ReLU_function?enrichId=rgreq-7e8c651763c94643a908ff4365f0e827-XXX&enrichSource=Y292ZXJQYWdlOzM4MTUyMTI3NztBUzoxMTQzMTI4MTI1MjYwMDg3MUAxNzE4NzkwMTczMTcx&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/381521277_Coordinate_Descent_Algorithm_for_Nonlinear_Matrix_Decomposition_with_the_ReLU_function?enrichId=rgreq-7e8c651763c94643a908ff4365f0e827-XXX&enrichSource=Y292ZXJQYWdlOzM4MTUyMTI3NztBUzoxMTQzMTI4MTI1MjYwMDg3MUAxNzE4NzkwMTczMTcx&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7e8c651763c94643a908ff4365f0e827-XXX&enrichSource=Y292ZXJQYWdlOzM4MTUyMTI3NztBUzoxMTQzMTI4MTI1MjYwMDg3MUAxNzE4NzkwMTczMTcx&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Atharva-Awari-3?enrichId=rgreq-7e8c651763c94643a908ff4365f0e827-XXX&enrichSource=Y292ZXJQYWdlOzM4MTUyMTI3NztBUzoxMTQzMTI4MTI1MjYwMDg3MUAxNzE4NzkwMTczMTcx&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Atharva-Awari-3?enrichId=rgreq-7e8c651763c94643a908ff4365f0e827-XXX&enrichSource=Y292ZXJQYWdlOzM4MTUyMTI3NztBUzoxMTQzMTI4MTI1MjYwMDg3MUAxNzE4NzkwMTczMTcx&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite-de-Mons?enrichId=rgreq-7e8c651763c94643a908ff4365f0e827-XXX&enrichSource=Y292ZXJQYWdlOzM4MTUyMTI3NztBUzoxMTQzMTI4MTI1MjYwMDg3MUAxNzE4NzkwMTczMTcx&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Atharva-Awari-3?enrichId=rgreq-7e8c651763c94643a908ff4365f0e827-XXX&enrichSource=Y292ZXJQYWdlOzM4MTUyMTI3NztBUzoxMTQzMTI4MTI1MjYwMDg3MUAxNzE4NzkwMTczMTcx&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nicolas-Gillis?enrichId=rgreq-7e8c651763c94643a908ff4365f0e827-XXX&enrichSource=Y292ZXJQYWdlOzM4MTUyMTI3NztBUzoxMTQzMTI4MTI1MjYwMDg3MUAxNzE4NzkwMTczMTcx&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nicolas-Gillis?enrichId=rgreq-7e8c651763c94643a908ff4365f0e827-XXX&enrichSource=Y292ZXJQYWdlOzM4MTUyMTI3NztBUzoxMTQzMTI4MTI1MjYwMDg3MUAxNzE4NzkwMTczMTcx&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite-de-Mons?enrichId=rgreq-7e8c651763c94643a908ff4365f0e827-XXX&enrichSource=Y292ZXJQYWdlOzM4MTUyMTI3NztBUzoxMTQzMTI4MTI1MjYwMDg3MUAxNzE4NzkwMTczMTcx&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nicolas-Gillis?enrichId=rgreq-7e8c651763c94643a908ff4365f0e827-XXX&enrichSource=Y292ZXJQYWdlOzM4MTUyMTI3NztBUzoxMTQzMTI4MTI1MjYwMDg3MUAxNzE4NzkwMTczMTcx&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Atharva-Awari-3?enrichId=rgreq-7e8c651763c94643a908ff4365f0e827-XXX&enrichSource=Y292ZXJQYWdlOzM4MTUyMTI3NztBUzoxMTQzMTI4MTI1MjYwMDg3MUAxNzE4NzkwMTczMTcx&el=1_x_10&_esc=publicationCoverPdf

Coordinate Descent Algorithm for Nonlinear Matrix
Decomposition with the ReLU function

Atharva Awari Harrison Nguyen Samuel Wertz Arnaud Vandaele Nicolas Gillis
University of Mons

Rue de Houdain 9, 7000 Belgium
{atharvaabhijit.awari, nicolas.gillis, arnaud.vandaele}@umons.ac.be, {harrison.nguyen,samuel.wertz}@student.umons.ac.be

Abstract—Nonlinear Matrix Decompositions (NMD) solve the
following problem: Given a matrix X , find low-rank factors
W and H such that X ≈ f(WH), where f is an element-
wise nonlinear function. In this paper, we focus on the case
when f is the rectified linear unit (ReLU) activation, that is,
when f(·) = max(0, ·), which is referred to as ReLU-NMD. All
state-of-the-art algorithms for ReLU-NMD have been designed
to solve a reformulation of ReLU-NMD. It turns out that this
reformulation leads to a non-equivalent problem, and hence to
suboptimal solutions. In this paper, we propose a coordinate-
descent (CD) algorithm designed to solve ReLU-NMD directly.
This allows us to compute more accurate solutions, with smaller
error. This is illustrated on synthetic and real-world datasets.

Index Terms—Nonlinear Matrix Decomposition (NMD), Rec-
tified Linear Unit (ReLU), Coordinate Descent (CD).

I. INTRODUCTION

Low-rank matrix approximations (LRMAs) are widely used
in the fields of machine learning and data analysis. When
dealing with a large data set stored in a matrix X , it is
customary to approximate it by a product of low-rank factors
and hence to solve the following problem: Given X ∈ Rm×n

and r ≪ min(m,n), find two factors, W ∈ Rm×r and
H ∈ Rr×n, such that X ≈ WH . In data analysis, it is
equivalent to linear dimensionality reduction, meaning that
each column of the matrix X is approximated by a linear
combination of the columns of W , with the weights being
provided by the corresponding column of H: for all j,

X(:, j) ≈
r∑

k=1

W (:, k) H(k, j). (1)

Low-rank decompositions allow one to obtain a compressed
representation of the original data and to automatically ex-
tract important features. The truncated singular value de-
composition (TSVD) [1] and nonnegative matrix factorization
(NMF) [2] are notable examples of low-rank matrix approxi-
mations.

Recently, there has been growing interest in Nonlinear
Matrix Decompositions (NMDs) [3]–[5]. These nonlinear de-
compositions are gaining more and more popularity as they
lead to more expressive models than their linear counterparts.
Moreover, NMDs are more appropriate in modeling some
nonlinear real-world phenomena.

Authors acknowledge the support by the European Union (ERC consolida-
tor, eLinoR, no 101085607), by the the F.R.S.-FNRS under the PDR project
T.0097.22, and by the Francqui Foundation.

Let us define NMD: Given X ∈ Rm×n and r ≪ min(m,n),
find two factors, W ∈ Rm×r and H ∈ Rr×n, such that

X ≈ f(WH),

where f(·) is an element-wise nonlinear function. In general,
the task is to solve the following optimization problem:

min
W,H
∥X − f(WH)∥2F . (2)

In this paper, we focus on the case f(·) = max(0, ·), that
is, f is the ReLU function, which is frequently used as an
activation function in the hidden layers of neural networks.
The main problem addressed in this work is therefore: Given
X ∈ Rm×n and r ≪ min(m,n), solve

min
W,H
∥X −max(0,WH)∥2F . (3)

We refer to problem (3) as ReLU-NMD. ReLU-NMD is
able to approximate sparse nonnegative data, such as sparse
images and documents data sets, very effectively, that is, with
significantly smaller error than linear models, such TSVD or
NMF, using the same factorization rank. Moreover, ReLU-
NMD was shown to be able to recover a faithful low-
dimensional representation of high-dimensional data [4], and
to be a meaningful model for matrix completion [6].

The objective function in (3) is nonconvex and nondifferen-
tiable, which makes it very difficult to solve directly. In [4],
Saul proposed a latent-variable model for ReLU-NMD:

min
Z,W,H

∥Z −WH∥2F such that max(0, Z) = X. (4)

This altered formulation introduces an additional latent vari-
able Z and has the advantage of moving the nonlinearity
from the objective function to the constraint, which opens the
possibility of exploring new solution strategies; in particular
simple alternating scheme optimizing Z, W and H alterna-
tively [4], [7], [8]. However, the latent-variable formulation is
not equivalent to the original ReLU-NMD problem, that is, an
optimal solution to (4) is not necessarily optimal for (3), and
vice versa. In particular, when X contains negative entries, (4)
is infeasible while (3) is still meaningful. The proof in the case
X ≥ 0 will be provided in the longer version of the paper, but
we will illustrate the differences between (3) and (4) through
numerical experiments.
Contribution and outline: All the previously known al-
gorithms to tackle ReLU-NMD solve the latent variable

model (4). Our main contribution in this paper is to propose
a new algorithm based on coordinate descent (CD) that ad-
dresses (3) directly, for the first time, allowing our method to
reach better solutions than the state-of-the-art algorithms.

The paper is organized as follows. Section II provides a brief
overview of the previous works and algorithms. In Section III,
we introduce our proposed CD algorithm for ReLU-NMD (3).
In Section IV, we empirically show the effectiveness of our
method through various experiments on real data sets and show
that CD provides better solutions than existing algorithms.

II. PREVIOUS WORKS

In this section, we provide a brief overview of the existing
algorithms designed to solve the latent-variable formulation of
ReLU-NMD (4). For the first two algorithms (see subsections
II-A and II-B), Saul denotes the low-rank approximation Θ =
WH ∈ Rm×n, and describes iterative algorithms that optimize
over Θ directly. So, (4) is formulated as:

min
Z,Θ
∥Z −Θ∥2F such that

{
rank(Θ) = r,

max(0, Z) = X.
(5)

A. Naive scheme and extrapolation

This is an alternating optimization scheme over the matrix
variables Z and Θ in (5). When Θ is fixed, the optimal Z is
given by: for all i, j,

Zij =

{
Xij if Xij > 0,

min(0,Θij) if Xij = 0.
(6)

When Z is fixed, the optimal Θ is given by the rank-r TSVD
of Z. In his follow-up paper [7], Saul also proposed a way
to accelerate the naive scheme by introducing an additional
momentum term on the update of Z with a fixed momentum
parameter. Let Zk denote the value of Z after the kth iteration,
then momentum is applied as follows:

Zk+1 ← Zk+1 + α(Zk − Zk−1), where α ∈ (0, 1). (7)

B. Expectation-Maximization (EM)

The second algorithm by Saul is a sophisticated EM method.
For each Θij , a Gaussian latent variable Z̃ij is defined as
Z̃ij ∼ N (Θij , σ

2). The observation Z is a sample of Z̃,
and the matrix X is obtained from the elementwise nonlinear
mapping of Z, that is X = max(0, Z). The model is then
estimated by maximizing the likelihood of the observation
X in terms of the parameters, namely the matrix Θ and the
variance σ2. The overall log-likelihood under this model is
given by

logP (X|Θ, σ2) = Σij logP (Xij |Θij , σ
2).

This sum is maximized to estimate the parameters Θ and σ2.
To do this, EM is used. The steps are rather complicated, and
we refer the interested readers to [4] for more details.
Note: The M-step of the algorithm requires the computation of
a rank-r TSVD and hence the computational cost is the same
as the Naive scheme. Also, an additional momentum term can
be added on the update of Z, as in (7).

C. Aggressive-momentum algorithm (A-NMD)

The Polyak-type extrapolation step (7) uses a fixed mo-
mentum parameter α and only extrapolates the variable Z.
The parameter α is kept fixed throughout the execution of
the algorithm, which makes the performance more sensitive to
the initial choice of α. In [8], Seraghiti et al. propose a more
aggressive strategy in order to accelerate the Naive scheme:

Zk+1 ← Zk+1 + βk(Z
k+1 − Zk),

where the momentum parameter βk is adaptively adjusted at
each iteration k based on the objective function. Moreover,
extrapolation is used for both variables Θ and Z. Since the
parameter βk is chosen adaptively at each step, the algorithm
is less sensitive to the initial choice of the parameter. A-NMD
was shown to be significantly faster than the Naive scheme.

D. Three-blocks algorithm (3B-NMD)

All algorithms previously described for the ReLU-NMD
problem require the computation of a rank-r TSVD at each
iteration. This is mainly because they work with a rank-r
factor Θ directly and not with low-rank factors W and H .
Computation of TSVD at each iteration is an expensive step,
especially when it comes to large-size data.

In order to bypass this relatively expensive step, Seraghiti
et al. propose to replace Θ by the product WH and solve (4)
directly. The subproblems for the variables W and H have
closed-form solutions; in fact, it amounts to solving matrix
least squares problems. This reduces the number of opera-
tions from O(mnr2) operations for the TSVD to O(mnr)
operations for the matrix least squares problems. To speed-
up 3B-NMD, an acceleration step equivalent to (7) was also
used after updating both Z and Θ. The 3B-NMD algorithm
was shown to be significantly faster than all other algorithms
when handling large-size data; see [8] for further details.

III. PROPOSED ALGORITHMS

We would like to emphasize that all algorithms described
in Section II solve the latent variable formulation (4) of the
ReLU-NMD. In this Section, we propose a new algorithm
based on the coordinate-descent (CD) scheme dealing directly
with the original ReLU-NMD problem (3).

CD will update the factors W and H alternately. Since
the problem is symmetric, that is, X ≈ max(0,WH) is
equivalent to XT ≈ max(0, HTWT), we describe the update
of H when W is fixed; the update of W can be obtained by
symmetry. Moreover, as in standard low-rank approximations,
the problem in H is separable by columns, that is, we can
solve separately for each j:

min
H(:,j)

∥X(:, j)−max (0,WH(:, j))∥2F . (8)

We propose to solve (8) by updating one entry at a time,
which is CD. Suppose all entries of H(:, j) are fixed except
the ith one, that is, H(i, j). The one-variable subproblem can
be written as follows:

min
x∈R

f(x) = ∥c−max(0, b+ ax)∥22, (9)

where x = H(i, j) ∈ R, c = X(:, j) ∈ Rm, b =∑r
k=1,k ̸=i W (:, k)H(k, j) ∈ Rm, and a = W (:, i) ∈ Rm. By

expanding the Euclidean norm, we observe that the objective
in (9) is the sum of m one-variable functions:

f(x) =

m∑
t=1

ft(x) with ft(x) = (ct −max(0, bt + atx))
2
.

(10)
We can assume w.l.o.g. that at ̸= 0 since ft is constant in x =
H(i, j) otherwise, and hence can be removed. Each function
ft has a break point at xt =

−bt
at

. When at > 0, ft is a constant
to the left of the break point and quadratic to its right, and
vice versa when at < 0. More precisely, we have

at > 0 : ft(x) =


c2t when x ≤ −bt

at
,

(ct − bt − atx)
2 when x ≥ −bt

at
,

at < 0 : ft(x) =


c2t when x ≥ −bt

at
,

(ct − bt − atx)
2 when x ≤ −bt

at
.

Between two consecutive break points, the function (10) is
the sum of constant and quadratic functions ft. From this
observation, a simple strategy arises to find the global optimum
of (9): consider the value of the objective at all breakpoints
and at the minimum, if it exists, of the sum of the active
quadratics between two consecutive break points.

In the following, and w.l.o.g., we assume that the functions
ft are sorted such that

−bt
at
≤ −bt+1

at+1
.

Next, we explain how we find the minimizer of f within the
pth interval Ip = (

−bp
ap

,
−bp+1

ap+1
), with p = 1, ...,m− 1.

Let us define two sets of indices: the set T+(p) with the
indices of the functions ft, t ≤ p, with an active quadratic
part on Ip,

T+(p) = {t ∈ {1, ...,m} | t ≤ p, at > 0},

and the set T−(p) with the indices of the functions ft, t ≥
p+ 1, with an active quadratic part on Ip,

T−(p) = {t ∈ {1, ...,m} | t ≥ p+ 1, at < 0}.

Let us also define Tp = T+(p) ∪ T−(p). Similarly we
also define the 0th interval as (−∞, −b1

a1
], and the mth as

[−bm
am

,∞).
With this notation, the derivative of f in the interior of the

pth interval is :

f ′(x) = 2
∑
p∈Tp

ap(apx+ bp − cp) for x ∈
]
−bp
ap

,
−bp+1

ap+1

[
.

(11)
Considering the interval Ip, the optimum lies at one of the

break points −bp
ap

, −bp+1

ap+1
or in the interior when f ′(x) given in

(11) is equal to 0 on the interval. When the global minimizer

of f(x) is on the left (resp. right) of the interval, the solution
is −bp

ap
(resp. −bp+1

ap+1
). Finally, the minimizer of f(x) on the

interval is given by the expression:

min

(
−bp+1

ap+1
,max

(
−bp
ap

,
a(Tp)

T (c(Tp)− b(Tp))

∥a(Tp)∥22

))
.

The optimal solution can be computed for every interval
p = 1, 2, . . . ,m − 1, and the overall optimum value is the
corresponding update for x = H(i, j). The CD algorithm
optimizes alternatively over the entries of the factors W and
H , see Algorithm 1.

Algorithm 1: CD algorithm for ReLU-NMD

Require: X ∈ Rm×n, W (0) ∈ Rm×r, H(0) ∈ Rr×n, maxit.
Ensure: Two matrices W ∈ Rm×r and H ∈ Rr×n s.t.

X ≈ max(0,WH).
1: for k = 1, . . . , maxit do
2: H(k) = Algorithm 2(X,W (k−1), H(k−1))

3: W (k)T = Algorithm 2(XT , H(k)T ,W (k−1)T)
4: end for

Algorithm 2: CD algorithm for H

Require: X ∈ Rm×n, W ∈ Rm×r, H(0) ∈ Rr×n

Ensure: H(1) is obtained as one cyclic CD update for
minH≥0 ∥X −max(0,WH)∥2F starting at H(0).

1: [r, n] = size(H(0))
2: for j = 1, . . . , n do
3: c = X(:, j)
4: b = WH(0)(:, j)
5: for i = 1, . . . , r do
6: a = W (:, i)
7: b = b−W (:, i)H(0)(i, j)
8: H(1)(i, j) = argminx∥c−max(0, b+ ax)∥22
9: b = b+W (:, i)H(1)(i, j)

10: end for
11: end for

A. Complexity and convergence
In Algorithm 2, the most computationally expensive step is

step 8 where a single entry H(i, j) is being updated. This is
mainly because this step requires the sorting of an m−length
vector requiring O(m logm) operations. Considering the inner
and the outer loops through steps 2-11 in Algorithm 2, the cost
to update all entries of H once is O(mnr logm). Similarly,
the cost to update all entries of W is O(mnr log n). Hence,
in total, the CD algorithm requires O(mnrmax(logm, log n))
operations to update once every variable.

Coordinate descent guarantees the monotonicity of the the
objective function which is bounded below, and hence the
objective function values converge. However, since ReLU-
NMD (3) is non-convex and non-smooth, there are no conver-
gence guarantees to a critical point for the sequence of iterates
(W (k), H(k)). Designing algorithms with such guarantees is a
topic for further research.

IV. NUMERICAL EXPERIMENTS

We have implemented Algorithm 1 in MATLAB, Ju-
lia and C++, to compare implementations in different lan-
guages, and also allow people to use ReLU-NMD in differ-
ent languages. The code is available from https://gitlab.com/
Atharva05/coordinate-descent-for-relu-nmd.git.

A. Comparison of MATLAB, Julia and C++
Let us use simple synthetic data. The matrix X ∈ Rm×n

is generated as X = max(0,WH), where the entries of
W ∈ Rm×r and H ∈ Rr×n are generated from the
normal distribution, that is, W = randn(m,r) and H =
randn(r,n) in MATLAB. The resulting matrix X is around
50% sparse. The different algorithms are stopped when

relative error =
∥X −max(0,WH)∥F

∥X∥F
≤ 10−4. (12)

Table I compares the three implementations, with averaged
values of time and number of iterations1 over 5 different
synthetic matrices, with the rank-r TSVD as the initialization.

MATLAB JULIA C++
Size rank iter time(sec) time(sec) time(sec)

50 × 50 5 87 0.42 0.14 0.22
200 × 200 10 37 2.75 1.77 1.62
500 × 500 25 25 23.82 24.07 19.53

1000 × 1000 32 21 97.37 98.25 90.49

TABLE I: Average computational time and iterations needed
to satisfy condition (12) on synthetic data.

We observe that there is not a significant difference in
timings between the three implementations.
MATLAB vs. Julia with Multi-threading: Since the rows
(resp. columns) of the factor W (resp. H) are updated indepen-
dently, we can use multi-threading to update several columns
in parallel to speed-up the process. The number of threads was
set to 8 in both MATLAB and Julia. We did not include C++
as it is more tricky to activate multi-threading. Table II reports
the results.

MATLAB JULIA
Size rank iter time(sec) time(sec)

50 × 50 5 87 8.51 0.14
200 × 200 10 37 5.55 0.97
500 × 500 25 25 9.44 8.99

1000 × 1000 32 21 23.58 32.09

TABLE II: Average time and iterations needed to satisfy
condition in (12) on synthetic data with multi-threading.

For small matrices, multi-threading is not very effective,
even slowing down computations. For m = n = 1000, there
is a factor 4 (resp. 3) acceleration for MATLAB (resp. Julia).

Since the previous implementations of the ReLU-NMD
algorithms are all available in MATLAB [4], [7], [8] and that
MATLAB performs similarly than C++ and Julia, we will now
stick to the multi-threaded version of MATLAB for comparing
our CD algorithm with the state-of-the art methods.

1The number of iterations are the same for all implementations as we used
the same initializations in MATLAB, Julia and C++ (namely, the SVD).

B. Comparison with the previous methods

We now compare our CD algorithm with A-NMD and 3B-
NMD from [8] which performed significantly better than the
naive scheme and EM of Saul [4], [7].

1) Synthetic low-rank data: We first use the same synthetic
data as above. Table III reports the averaged values of time
and number of iterations over 5 different synthetic matrices,
all algorithms use the rank-r TSVD as initialization.

CD (Multi-threading) A-NMD 3B-NMD
Size time iter time iter time iter

500 × 500 9.15 25 0.74 32 0.07 23
1000 × 1000 22.39 21 3.45 27 0.21 25
1500 × 1500 44.08 20 2.56 23 0.38 25
2000 × 2000 71.97 18 5.20 26 0.70 26

TABLE III: Average computational time and iterations needed
to satisfy condition in (12) on synthetic data with r = 32.

The CD algorithm converges faster than the other two
algorithms in terms of the number of iterations to satisfy
condition (12). However, it is significantly slower in terms of
computational time as illustrated in Table III. The reason is the
use of loops as well as the sorting procedure of Algorithm 1.

2) Synthetic high-rank data: To motivate the usefulness of
the CD algorithm, let us perform another experiment on ran-
dom data generated as follows: Z = randn(m,n) and X =
max(0,Z). In this way, the matrix X is around 50% sparse
and has high rank. This problem is harder to solve since there
is no exact ground-truth solution as in the previous example.
In fact, it is not difficult to see that the original ReLU-NMD
formulation (3) and the latent variable model (4) are equivalent
when there exists an exact decomposition of rank r, that is,
when there exists (W,H) such that X = max(WH, 0).

In addition to running CD, A-NMD and 3B-NMD indi-
vidually, we also performed the experiments with a hybrid
combination of CD and A-NMD: we call CD+A-NMD (resp.
A-NMD+CD) the algorithm that runs first CD (resp. A-NMD)
with half the total iterations and then A-NMD (resp. CD) for
the second half. The results are displayed on Figure 1.

0 500 1000
Iterations

0.6

0.65

0.7

0.75

R
el

at
iv

e
E

rr
or

CD+A-NMD
A-NMD+CD
CD
A-NMD
3B-NMD

(a) m = n = 200, rank = 20.

0 500 1000
Iterations

0.6

0.65

0.7

0.75

0.8

R
el

at
iv

e
E

rr
or

CD+A-NMD
A-NMD+CD
CD
A-NMD
3B-NMD

(b) m = n = 500, rank = 50.

Fig. 1: Relative errors of CD, A-NMD, 3B-NMD, CD+A-
NMD and A-NMD+CD on full-rank synthetic data.

Algorithms were run for 1000 iterations and initialized with
the rank-r TSVD. Figure 1 shows that CD reaches significantly

https://gitlab.com/Atharva05/coordinate-descent-for-relu-nmd.git
https://gitlab.com/Atharva05/coordinate-descent-for-relu-nmd.git

better solutions than A-NMD and 3B-NMD. The reason is
that A-NMD and 3B-NMD rely on the reformulation (4) and
do not directly solve ReLU-NMD (3). To confirm this claim,
observe that when A-NMD is initialized with a solution of
ReLU-NMD (3), that is, CD+A-NMD, we observe a sharp
spike in the relative error and A-NMD ends up converging to
a much worse solution. It is because a good solution for ReLU-
NMD (3) is not a good solution for the latent formulation (4),
and that Θ = WH and Z with (6) leads to a sharp increase in
the error. On the other hand, when CD is initialized with the
solution obtained from A-NMD (A-NMD+CD), it does a good
job by significantly reducing the relative error, performing
better than A-NMD and 3B-NMD.

3) Sparse Images: Let us now compare the same algorithms
on sparse image data sets as in [4], [8].
Sparse NMF factors of the CBCL data set: Let us illustrate
another application of the CD algorithm on sparse dictionary
images (around 85% sparse) obtained via the rank-100 NMF
decomposition of the CBCL data set as in [2]. The input
matrix X is a dataset of sparse images of size 361-by-100.
We perform a rank-20 compression of the input matrix using
A-NMD and CD. We only use A-NMD as it is performing best
for this data set [8]. Note that the relative error obtained by
the TSVD is large, namely 78%, showing that ReLU-NMD is
significantly more expressive than the TSVD for sparse data
sets as it will be able to achieve relative error smaller than
2.5%; see below. Figure 2 displays the relative errors. A-NMD

0 5000 10000
Iterations

10-1

R
el

at
iv

e
E

rr
or

CD+A-NMD
A-NMD+CD
CD
A-NMD

Fig. 2: Compression of a 361-by-100 sparse dictionary by A-
NMD and CD initialized with the solution of A-NMD.

obtains a relative error of 4.74%. After 5000 iterations, we
initialize CD with the solution obtained from A-NMD which
reduces the error almost by half, to 2.41%, as before because
it solves the original ReLU-NMD problem (3). Note however
that CD alone is quickly stuck at a worse solution. We also
initialized CD with 10 random initializations: In all 10 cases,
it gets stuck at the same relative error. This is because ReLU-
NMD is highly non-convex, and hence algorithms can get
stuck in bad local solutions. Recall however that initializing
CD with A-NMD allows CD to escape such solutions as
CD+A-NMD produces the best solution. As for the other
experiments, CD+A-NMD allows A-NMD to converge to a
solution with lower error than A-NMD.

MNIST dataset: MNIST is a dataset of 28 × 28 greyscale
images of hand-written digits [9]. The data matrix is generated
by concatenating vectorized images into a matrix of size 784×
n where n = 200 or n = 500. Figure 3 displays the evolution

0 500 1000
Iterations

0.24

0.26

0.28

0.3

0.32

R
el

at
iv

e
E

rr
or

CD+A-NMD
A-NMD+CD
CD
A-NMD
3B-NMD

(a) n = 200, rank = 20.

0 500 1000
Iterations

0.1

0.11

0.12

0.13

R
el

at
iv

e
E

rr
or

CD+A-NMD
A-NMD+CD
CD
A-NMD
3B-NMD

(b) n = 500, rank = 50.

Fig. 3: Relative error of CD, A-NMD, and 3B-NMD on
MNIST, with (a) n = 200, and (b) n = 500 images.

of the relative error when the experiment is conducted with 200
and 500 images respectively. It is evident that within the same
number of iterations, CD is able to find better solutions than A-
NMD and 3B-NMD. Moreover, with the hybrid combinations,
that is, CD+A-NMD and A-NMD+CD, we observe a similar
behaviour as in the high-rank random data case; see Figure 1
and the discussion that follows.

V. CONCLUSION

In this paper, we have proposed a new algorithm based on
coordinate descent (CD) to solve ReLU-NMD (3). All the
previous state-of-the-art algorithms solved the latent-variable
model (4) which is not equivalent to the original problem (3).
Our CD algorithm provides, for the first time, a way to tackle
ReLU-NMD (3) directly and is able to reach significantly
better solutions than previous methods.

Further work include the acceleration of the CD algorithm,
as its computational cost per iteration is at the moment larger
than previous methods.

REFERENCES

[1] C. Eckart and G. Young, “The approximation of one matrix by another
of lower rank,” Psychometrika, vol. 1, no. 3, pp. 211–218, 1936.

[2] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative
matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[3] N. Whiteley, A. Gray, and P. Rubin-Delanchy, “Matrix factorisation and
the interpretation of geodesic distance,” Advances in Neural Information
Processing Systems, vol. 34, pp. 24–38, 2021.

[4] L. K. Saul, “A nonlinear matrix decomposition for mining the zeros of
sparse data,” SIAM J. Math. Data Sci., vol. 4, no. 2, pp. 431–463, 2022.

[5] L. Loconte, A. M. Sladek, S. Mengel, M. Trapp, A. Solin, N. Gillis, and
A. Vergari, “Subtractive mixture models via squaring: Representation and
learning,” in Int. Conf. on Learning Representations (ICLR), 2024.

[6] H. Liu, P. Wang, L. Huang, Q. Qu, and L. Balzano, “Symmetric matrix
completion with relu sampling,” in ICML, 2024, arXiv:2406.05822.

[7] L. K. Saul, “A geometrical connection between sparse and low-rank
matrices and its application to manifold learning,” Trans. Mach. Learn.
Res., 2023.

[8] G. Seraghiti, A. Awari, A. Vandaele, M. Porcelli, and N. Gillis, “Ac-
celerated algorithms for nonlinear matrix decomposition with the ReLU
function,” in IEEE Workshop on Mach. Learn. for Signal Process., 2023.

[9] L. Deng, “The MNIST database of handwritten digit images for machine
learning research,” IEEE Signal Process. Mag., vol. 29, no. 6, pp. 141–
142, 2012.

View publication stats

https://www.researchgate.net/publication/381521277

	Introduction
	Previous works
	Naive scheme and extrapolation
	Expectation-Maximization (EM)
	Aggressive-momentum algorithm (A-NMD)
	Three-blocks algorithm (3B-NMD)

	Proposed algorithms
	Complexity and convergence

	Numerical Experiments
	Comparison of MATLAB, Julia and C++
	Comparison with the previous methods
	Synthetic low-rank data
	Synthetic high-rank data
	Sparse Images

	Conclusion
	References

